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Abstract

The expansion of the Internet of Things in the years to come will require new methods to
handle and analyze the large amounts of data generated by it. Extensive and diverse data
sets are needed to aid in the creation of these algorithms and applications. This work
describes the design of a generator to synthesize sensor data sets to the configuration of
user.

The design is based on existing research on generators used in different environments,
focusing particularly on pseudo random numbers. It is flexible and easy to incorporate
into various environments and is built to be expanded in different ways.

A provided reference implementation is shown to perform well and produce consistent
and configurable outputs. It is able to generate appropriate amounts of data with
different user-controllable properties such as distribution, location, and width.

The presented design and implementation should prove useful in future works dealing
with various aspects of analyzing and handling large sets of sensor data.
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Chapter 1.
Introduction

In recent times, a trend has emerged to embed network-connected devices wherever pos-
sible, creating the Internet of Things (IoT). Sensors are being deployed everywhere to
improve predictions of natural events. Monitoring that has been done manually before —
possibly even with analog devices — will now be managed remotely via digital networks.
This introduces billions of new nodes into the internet, each producing small amounts of
data to be sent over the network in regular intervals. The sheer amount of devices makes
the volume of data extremely large compared to present numbers. Current projections
predict that by 2020 embedded devices will account for the same amount of data as the
entire internet generated in 2014 [13].

Because of this rapid growth it is important to create systems to analyze and utilize
this information. For this it is vital to create suitable algorithms and applications to
automate this process. An issue with this is the absence of standardized data models
right now, though universal specifications are being developed [3]. This makes it com-
plicated to use real-world data since the application would have to be adapted for each
set independently. One solution to this is to use a generator to create synthetic data
sets to work with. With a generator it is possible to create as many data sets as needed
with a consistent model, making it easier to create and test applications and algorithms.
These can be adapted to different models after correctness has been verified.

In the process of creating these applications and algorithms it can be desirable to focus
only on the data itself, omitting the aspect of transportation. However, this also renders
existing, widely used solutions such as the ns-3 network simulator [10] impractical, as
it heavily focuses on simulating the transactions between network nodes.

Because of this it is necessary to design a generator that is specifically tailored to support
the creation of such applications and algorithms.

1.1. The Task at Hand

This work describes the design of one such generator for sensor data output.
The generator is intended to be used for testing of algorithms, but could also be useful
in other applications such as simulation of sensor networks. For this, outputs should
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be sufficiently randomly distributed to be usable for broad tests. This means that the
generator will have a close relation to random number generators (RNGs), making it
suitable to look into the process of random number generation. Additionally it has to
be configurable to appropriately cover different special cases, which also makes the gen-
erator more versatile and useful to more types of applications.

Given the amount of data to be handled by those algorithms, the generator must also
be able to produce sufficiently high numbers of output data sets. While the orders of
magnitude are not in the realms of some large scientific projects in fields such as physics
or complex biological systems, it is essential to take this into account.

Since a universal standard for sensors is being developed by the IEEE [3], it should
be a feasible assumption that more sensor data will be in consistent formats in the fu-
ture. Based on this it would be appropriate to use the in-progress IEEE 1451 standard
as guideline for the data model of this generator. Furthermore the generator should
be easily adaptable to generate different data models, possibly being adjusted to new
guidelines set by IEEE 1451 in the future. This also means that the design should be as
simple as possible to make it easier to alter.

It is assumed that only the output of the generator will be used, which allows complete
exclusion of transportation aspects from the application. The elimination of transporta-
tion from generation will provide some benefits to the design of the generator, delivering
gains in performance and reducing the overall complexity of the design. This makes it
easier to adapt and more flexible, enabling quicker development and better optimiza-
tion.

1.2. Outline

Chapter 2 will focus on existing research related to this task. To create a detailed list of
requirements for the design, works related to scientific data generation will be reviewed.
This also includes different types of generators, such as random number generators as
well as pre-seeded generators.

Chapter 3 presents the proposed design of the generator and explains the decisions
behind it. After this, a general implementation for object-oriented languages is given
and utilized to explain the general procedure. This is then used to introduce the reference
implementation, which is provided with this work.

In chapter 4 the design, implementation, and generated results will be evaluated based
on conditions set before its creation.

Finally, in chapter 5 the results will be summarized and possible improvements and
extensions will be suggested. This will also present potential starting points for future
works.
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Foundation

This chapter focuses on research related to the given task. The related works described
here create a base and provide guidelines on how to handle different aspects of designing
a generator. Multiple different types of generators will be discussed to collect ideas for
the design.

Types of generators

A possible, non-exclusive categorization of generators is to differentiate between complex
seeded generators, cryptographic random number generators, and scientific random num-
ber generators. The first type of generators are complex seeded generators. Those are
generators that utilize pre-defined seeds to generate data from. This approach can be
used to generate complex models, for example interactions in living organisms in biolog-
ical or medical contexts. This way complex models can be generated without completely
synthesizing them, which would require larger amounts of computations.

Then there are random number generators, which can provide a base for other types of
generators, or be used directly in computations. As the generator will be closely related
to or employ random number generators, cryptographic random number generators will
also be included in this chapter. These are used in security applications and conse-
quently have additional requirements to be able to withstand attempts to compromise
the applications relying on them.

Lastly there are scientific random number generators, which focus specifically on large-
scale scientific application, requiring better performance and scalability. They may also
include special algorithmic features to be better suited for specialized applications.
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2.1. Complex Seeded Generators

SynTReN

An example for this class of generators is Synthetic Transcriptional Regulatory Networks
(SynTReN), which is a generator for complex simulated gene expression data. It was in-
troduced by Van den Bulcke et al. in SynTReN: a generator of synthetic gene expression
data for design and analysis of structure learning algorithms [14]. Its goal is to create
data sets which are as close to real-world data as possible.

This generator simulates complex interactions in living systems to produce usable data
sets for the development of algorithms in the medical field, using networks as models
for the interactions. Real networks are used as a source, from which the synthetic data
sets are built in multiple steps. For this the source networks are first split into smaller
structures and then linked in different ways through one of multiple different algorithms.
From this network the generator collects samples which are then slightly modified by
adding noise. Most of these parameters are user-definable or user-selectable such as the
source, the size of the network, and the noise levels [14].

Some ideas in this design can be transferred onto the design of a generator for sensor
data. Configurability should be included so different types of data sets can be generated
faster and more comfortably. This makes it easier to use different sets of data to analyze
the behavior of algorithms in various situations, especially in edge cases. Compared
to biological networks such as genetic data, sensor data is not especially complex, and
data generated by this generator does not need to be particularly close to real world
data. This makes it easier to generate sensor data without the need to simulate a sensor
network and use real seeds.

From these findings it can be concluded that the generator should not need to be complex
and that it has to provide the user with means to configure its behavior.

2.2. Cryptographic Random Number Generators

Yarrow

Yarrow, a family of cryptographic random number generators designed by Kelsey et
al. [6] is used here as a reference on high-quality pseudo random number generators.
Implementations of this RNG were in use for a long time (e.g. up until Apple OS X
10.10 [5, 4], released in 2014), even though alternatives were available and its original
authors had designed an improved successor [2]. In Yarrow-160: Notes on the Design
and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator, the au-
thors discuss a specific implementation which uses 160 bits of entropy [6]. Entropy is
the random data used for seeding and has to be collected through external means such
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as mouse inputs or hardware entropy generators.

The goal when designing Yarrow was to create a new, secure cryptographic (pseudo) ran-
dom number generator which is specifically built to withstand different kinds of attacks.
The first important step was to differentiate which requirements a random number gen-
erator to be used for cryptography has to meet compared to one that is built for general,
non-critical use.

Pseudo random number generators used in cryptography should generate unpredictable
numbers. This means the algorithm must produce number sequences in which the sin-
gular numbers are as unrelated to each other as possible, so they are hard to predict
even with large amounts of computational power [6].

Yarrow tries to achieve this by combining two different methods of transforming num-
bers: a hash function and a block cipher. The hash function has to be one-way and it
should not be possible to force collisions. The block cipher should also withstand known-
and chosen-plain-text attacks and its output should have good statistical properties. In
addition to this, the estimation of entropy is another essential part of the generator, as
overestimating it can substantially weaken the generated output [6]. The authors claim
that the pseudo random generator is secure if those requirements are fulfilled and the
generator has enough entropy to start with. Yarrow-160 employs SHA1 as hash function
and 3DES as block cipher [6].

Since the generator to be designed is not security-related or critical, it is unnecessary
to guarantee the security requirements for cryptographic random number generators.
However, the idea of transforming a number using cascading methods is something that
can be useful to create outputs that deviate from the norm far enough to be useful for
testing purposes.

2.3. Scientific Random Number Generators

Java RNG for Grande

Interfaces and itmplementations of random number generators for Java Grande applica-
tions discusses how to generate random numbers for use in large-scale scientific projects [1].
It puts special emphasis on generating numbers usable in Monte-Carlo simulations, which
produce results by repeating simulations a large number of times with randomized input.
Four common algorithms are differentiated: linear congruential generators (LCGs),
lagged Fibonacci generators (LFGs), shift registers, and generators which use a com-
bination of the aforementioned. LCGs utilize an initial seed Xy and generate numbers
from this with
Xnt1 = (a*x Xy, 4+ ¢) mod m

where X, is the n-th number in the sequence. The relations between the natural number
constants a, ¢, and m determine the period length after which the sequence of generated
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numbers will be repeated [7]. LFGs employ a generalized version of the recurrence
relation describing the Fibonacci sequence. They also operate on numbers inside a ring,
yielding

Xpn = (Xn—j © Xp—x) mod m

where © is any binary operation. X, again denotes the n-th number in the sequence
and the constants m, j and k are natural numbers. Shift register generators, for example
linear-feedback shift registers, produce output similar to LCGs [1]. Using registers with
feedback mechanisms, they combine parts of the previous output to generate a following
number.

In the work it is stated that the programming language Java offers some advantages in
regards to random number generation [1]. Since it is a popular programming language
used in many applications, a large number of libraries exist which provide different algo-
rithms that may be useful for scientific purposes. Furthermore Java provides transparent
behavior and precision for numeric data types, which makes implementations portable
and removes inconsistencies.

The authors also provide specific information on its provided RNGs. Java provides three
classes for random number generation: SecureRandom, Random, and Math. Of these,
Math is just a wrapper for Random, thus only two different classes are available. Se-
cureRandom is an interface for generation of cryptographically secure numbers similar
to those discussed in 2.2 [8]. The authors note that the specialized nature of crypto-
graphic random number generators like this render them comparatively slow, which is
undesirable in large-scale simulations. They also add that the possible use of hardware
generators and non-linear algorithms in SecureRandom makes results non-reproducible.
Random produces pseudo random numbers using an LCG and is versatile in its output.
This is distinguished as a positive aspect but the 2*® period size of the output is said
to be too small for large simulations such as Monte-Carlo simulations [1]. This indi-
cates that this might be a fitting supplier for random numbers for smaller to mid-sized
projects.

Another aspect the authors mention is repeatability, which they provide by using state-
saving [1]. This grants different possibilities like verification of simulation results and
testing the impact of algorithmic changes. As those features are desirable for the in-
tended use cases of the new generator, those guidelines should be taken into account.

2.4. Conclusions

The first conclusion to gain from Complex Seeded Generators is that configurability of
the generator is essential. Another finding is that because of the relative simplicity of
the required models, simulation is not necessary to generate appropriate outputs.

Upon reviewing Cryptographic Random Number Generators, it has become clear that
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security features are not required in the targeted use case and would constrain the de-
sign of the generator in unfavorable ways. Omitting these constraints means that the
generator may gain performance improvements and avoid the need to introduce complex
algorithms. Additionally, the practice of generating and modifying data using cascading
methods may prove helpful in the design of the generator.

Furthermore the section Scientific Random Number Generators shows the need for re-
peatability, which in this case is implemented by using state-saving. In this section it
is also stated that Java, due to its versatility in regards to random number generation,
may be an appropriate language to use for an implementation of the generator. The
Java Random class should be taken into consideration as a relatively fast and adaptable
provider of pseudo random numbers.







Chapter 3.
Design and Implementation

This chapter presents the specifics of the proposed design and explains decisions based
on earlier research. The first section introduces the general design of the generator and
validates decisions based on earlier research. It is accompanied by a component diagram
of the design to provide a condensed synopsis of the layout, portrayed in figure 3.1.
Then an overview of a possible implementation in an object-oriented language is given
and the process of generation is portrayed, after which some additional design choices
will be highlighted and explained. In addition to this, the reference implementation is
introduced and specific obstacles and choices made in the process are explained.

3.1. Design

Based on the non-functional requirements defined in chapter 1 and findings from chap-
ter 2 it is now possible to create the generic design of the generator. The design aims
to avoid imposing any unnecessary regulations onto possible implementations while still
providing an extensive framework with comprehensive support for different use cases.
Therefore it intends to be as simple as possible with clear separation of responsibilities.
Since the generator should generally be assumed to work in combination with other
applications, it has to provide mechanisms to allow simple integration into existing ap-
pliances. To ease this interaction with applications the generator itself will be a modular
library that can be directly incorporated into applications or built into a standalone so-
lution by supplying it with only a few additional components.

The library consists of four components which have defined interfaces for communica-
tion. These components can be modified or exchanged with different ones as long as
they provide the required functionality defined in the interfaces. This makes the whole
application adaptable and easily extensible. The four components are Generator, Data-
Model, NoiseAlgorithm, and SettingManager. In addition to this the DataOutput has to
be provided from the enclosing application.

Generator is the central component that is responsible for controlling the flow of the
library. It provides ways to initialize all components and start the process of generation,
and requires knowledge of the other components to do so. It needs to have access to the
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Figure 3.1.: Generator Design Diagram
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concrete generator of the DataModel to be able to produce and output the filled models
to the DataOutput.

The DataModel provides the model to the DataOutput, the concrete generator to the
Generator, and access to the settings as a way to configure the data that will be gen-
erated. Single data points are generated with the ModelGenerator, while Generator
oversees the process of generating the user-configured amount and types of outputs.
For this the DataModel requires access to the NoiseAlgorithm, which is used to transform
the data in the output models to achieve sufficient variance in the whole generated data
set. This applies the concept of cascading methods found in section 2.1 onto the issue
at hand. The NoiseAlgorithm also has to provide the SettingManager with an interface
to configure it.

SettingManager is the component that provides configurability of the generator to the
external application, and ultimately to the user. It provides methods to modify and
retrieve settings and can accept and handle arbitrary settings for the DataModel and
NoiseAlgorithm components. The library provides external access to the SettingManager
so the enclosing application can configure it ahead of time. Additionally SettingManager
provides a PersistenceHandler to store and load the configuration, including settings pro-
vided by other components. With this, all configuration is stored in the SettingManager
component, and saving and retrieving it is possible on request. This makes it possible
to reproduce results as long as all components exclusively rely on settings stored inside
SettingManager and do not utilize any externally controlled sources for data.

10



3.2. Object-Oriented Application in Java

3.1.1. Supplementary Instructions

In addition to this general design, there are guidelines the implementations need to fol-
low to ensure the results satisfy the given requirements.

Following the same principle as the IEEE TEDS standard (IEEE 1451.4) [3], implemen-
tations of DataModel should be self-describing.

All information stored inside such an object has to be accompanied by some instruction
on how the information is to be interpreted. As noted previously, implementations should
not utilize inputs that require settings which are not defined in the SettingManager, as
this would impede the reproducibility of results. For the same reason, implementations
may not employ true random number generators. Settings for the generator should only
be changeable through the SettingManager to ensure that all components receive con-
sistent settings. Therefore, all components also have to query settings exclusively from
the manager.

To simplify the process of building arbitrary DataModels and NoiseAlgorithms, im-
plementations should employ factory patterns. As no particular procedures for data
generation are specified, the quality and possible unique size of the output depends on
the actual implementation.

This design omits the aspect of transportation and does not include any simulation to
generate data, though implementations of DataModels may choose to do so. It should
be noted, however, that incorporating simulation into the generation of data will most
likely have impacts on the performance of the library.

Performance of Implementations

Since the application should be able to generate large numbers of outputs, performance
aspects should also not be disregarded. One way to improve performance is concur-
rency, assuming that splitting the work of generating the output can be done without
negative side-effects. Since concurrency is based on making processes independent from
each other to be able to execute them autonomously, it could be difficult to ensure that
consecutive runs of the generator with constant settings produce identical results.
From this it can be concluded that including concurrency in data generation could pos-
sibly require a large amount of work and the extend of its profits is questionable. Imple-
mentations of the generator may instead focus on reducing the amount of computation
required to generate a data object.

3.2. Object-Oriented Application in Java

Because the general design cannot fully ensure that the generator satisfies the given re-
quirements, this section presents an application of the design and guidelines in a popular

11
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object-oriented language. Many parts of this should be trivial to port to other object-
oriented languages.
The choice of Java for this task is based on a few different factors which are detailed
in section 2.3. Given that the referenced work recommends Java in part for providing
suitable suppliers of pseudo-random numbers, some additional research on this matter
seems appropriate.

3.2.1. Java 8 API: Random

The Java™ Platform, Standard Edition 8 API Specification should provide more infor-
mation on this. Random uses a single LCG with a 48-bit seed, producing output with a
period length of 248, The output can have up to 32 pseudo random bits and can be sup-
plied as one of several different data types [1, 8]. This means that Random will provide
the same sequence of numbers when initialized with the same seed, making repeatability
possible by simply storing the seeds. The period length of the generator should be large
enough for the intended use-case, as indicated earlier [1].

Since the LCG used in Random is only based on multiplication, addition, and modulo
operations on integers, it should also perform well compared to more complex random
number generators. It should also be an appropriate choice if an implementation chooses
to employ concurreny, as it is thread-safe. The class is, however, affected by contention,
potentially mitigating some of the benefits of concurrency [8].

3.2.2. Implementing the Design in Java

To correctly interpret the class diagram in figure 3.2 it should be discussed how the
different aspects of the design have been transferred onto Java.

The library is split into two packages: Main and Generator. The Main package is made
up of classes used for handling settings and high-level initialization, while the Generator
package includes everything participating in the actual generation of output data.

The Generator component is realized through the Generator and Init classes. They
are responsible for initialization of the library and controlling the other components.
If command-line arguments are to be provided, they are interpreted and handled by
Init. DataOutput provides an interface for DataQutput component, where the generated
data objects will be handed to for further processing by external applications. The Set-
tingManager is implemented by SettingProvider, to manage configuration and retrieval
of settings, PersistenceHandler, and SettingStore, which holds the application settings
and is able to store additional settings objects. SettingProvider stores the SettingStore
alongside derived settings and the DataQutput. Sensor and SensorData represent the
DataModel component, where Sensor is used to generate single SensorData objects.
Settings for the DataModel, in the design represented by ModelSettings, are directly in-
corporated into the SettingStore. The NoiseAlgorithm component is represented by the

12
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Figure 3.2.: Generator Class Diagram in Java
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interface of the same name and NoiseSettingStore.

Both SettingStore and NoiseSettingStore hold primitive settings that can be arranged
by the user to influence the output data. A factory pattern is used to create Sensor and
NoiseAlgorithm objects.

3.2.3. General Process

The process is split into two stages: initialization and data generation.

The initialization is described by the sequence diagram in figure 3.3. Before starting the
generator it is possible to configure it through the exposed SettingProvider, SettingStore,
and NoiseSettingStore, the latter of which depends on the NoiseAlgorithms provided by
the specific implementation. A DataOutput needs to be set in SettingProvider before
starting, since the data cannot be transferred to the application without it.

The entry point to the library is the Inif.run method, which processes command-line
arguments before launching the generator. When run is called, Init may initialize the
required settings objects depending on current availability and given parameters. Then
it calls Generator.initialize, which sets up all needed objects according to the settings
obtained from SettingProvider, after which the initialization of the library is complete.

Figure 3.3.: Initialization Sequence Diagram

| Init | | -Persi stenceHandIer! |:Settianrovider! | :NoiseAIqorithmFactorv| | :SensorFactory | | :Generator
T T T T T T
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After the initialization Init.run calls Generator.ezxecute, handing over control to the func-
tional part of the library. The Generator will then use the created Sensors to generate

14
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SensorData. Fach Sensor generates data corresponding to the type given to SensorFac-
tory when creating it. When Sensor.getData is called, a SensorData object is generated,
applying the pre-defined NoiseAlgorithm where appropriate. This process is depicted
as pseudo-loop in figure 3.4. The object is then returned to the Generator that trans-
fers it to the DataOutput. This is repeated according to user specifications, after which
DataOutput.flush is called to force processing of possible non-empty buffers to prevent
data loss. Afterwards the library hands back control to the execution environment. The
whole process is described in figure 3.4.

Figure 3.4.: Generation Sequence Diagram

Init .Generator :Sensor :NoiseAlgorithm :Dat tput
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3.2.4. Rationale

As this is only a general proposition of how the design could be implemented in Java, it
aims to provide the largest possible amount of flexibility to the actual implementations.
To achieve this, central elements such as the data model are not explicitly defined but
rather provided as a lowest common denominator.
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Generation

Consequently, SensorData only requires implementations to provide a universal way to
retrieve data from it. The internal layout of classes implementing it is completely up
to different implementations to decide, making it very flexible and easily possible to
integrate new types of output data into the application. This means that Sensors have
to be implemented to generate the specific type of data while still providing the getData
method for Generator to obtain the synthesized data. Therefore, a Sensor should store
all variables and objects required to create a complete SensorData object, which may
differ between types. This should include precision, minimum, and maximum values the
output should typically have but also possibly other user-configurable variables. As the
design is built around the concept of employing cascading methods for generation, the
Sensor needs to know some object that provides pseudo random numbers to get basic
numbers which can then be transformed as needed. This object is obtained through the
user-provided settings.

A tool for said transformations is a NoiseAlgorithm, which it also receives upon creation.
An implementation of NoiseAlgorithm has to provide methods to modify different nu-
meric types which might be used and should also take advantage of method overloading
to reduce complexity. It also has to accept a settings object to configure itself according
to user specifications.

The Generator stores a list of Sensors that are used to generate the data. This list is filled
when initialize is called, where the Sensors are created using the SensorFactory which
uses the appropriate subclass of Sensor for each given type. When Generator.execute is
called, it loops through the sensorList to request output data and then pushes it to the
DataOQOutput, which means giving it over to the parent application. This is repeated a
user-defined number of times, after which the library terminates.

Configuration

For all of this it is important that the user is able to define the behavior of the library
as much as possible.

This is done by configuring settings inside a SettingStore object. It enables modification
of the amount of output objects to be generated and the types of Sensors to use for
this. In addition to this the seed to be used for the generator providing base numbers
to Sensors, the typical range for outputs, and the precision can be set. The user can
also decide if Sensors should map the range and precision to sane numbers for each
specific type they represent. This is done instead of utilizing a separate SensorDataSet-
tings object since it reduces complexity when parsing settings. Most common types of
sensors should be easily representable in a way that only requires those three primitive
settings. Finally the SettingStore provides the option to select an implementation of
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NoiseAlgorithm to use for mutation of output numbers.

The unique settings for this object are stored inside a NoiseSettingStore. This inter-
face is only used to reference the object and has no required content as the settings
completely depend on the particular implementation of NoiseAlgorithm. Settings are
accessible through setters and getters, which are absent from figure 3.2 due to being of
trivial nature and occupying too much space.

The SettingStore, and transitively the NoiseSettingStore, are stored inside a Setting-
Provider object. This class provides access to all settings to every object in the appli-
cation. Additionally it provides access to complex objects derived from some settings
inside the SettingStore. These objects are the pseudo random number generator Random,
which provides base numbers in Sensors, and the NoiseAlgorithm. The former of these
is created by the NoiseAlgorithmFactory, which initiates the correct object according
to the given parameter and settings stored in NoiseSettingStore. Finally, the provider
also handles setting the DataOutput to push generated data to. The parent application
has to hand the output object to the provider through setOutputHandler before the ini-
tialization takes place, else the Generator should fail. The instance of SettingProvider
that holds the settings can only be created and accessed through the static methods of
SettingProvider, making this a singleton. This implements the central management of
settings as per instructions in 3.1.1.

Initialization is started by the Init class. Before calling the Generator it should process
parameters, which could be command-line switches, and create and populate Settings
objects as necessary. This class should also pass options regarding persisting of settings
to the PersistenceHandler. It is responsible for saving and retrieving settings to and
from persistent storage. For this it only needs to serialize the SettingProvider together
with the settings objects contained in it.

3.3. Reference Implementation

The reference implementation provided with this work is based on the groundwork done
in section 3.2. Full class diagrams of it can be found in appendix A Additional Imple-
mentation Diagrams.

The implementation is split into three subprojects: core, which is the generator library;
the DataOutput component, fileOutput; and a single class that combines both into a
standalone application.

The core library expands on diagram 3.2 by implementing a DataModel and a NoiseAl-
gorithm. The provided model component consists of SimpleSensorData and Temper-
atureSensor, which generates objects containing temperature data in °C or °F. The
currentValue is generated by fetching a number from the Random object and transform-
ing it with the stored NoiseAlgorithm. The unit of the output value is also randomly
decided and if necessary the value is converted.

SimpleSensorData is a generic model, only containing a float value, a precision range in
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float, and a unit string. Consequently it may hold many different types of data, even
though it is currently only used for temperature data.

The implemented NoiseAlgoritm is RandomNoiseAlgorithm, which will add random noise
to values based on user configuration. When given a number, it uses a separate Random
object to decide if noise should be applied. If this is true, it adds or subtracts a randomly
generated value inside a specified range.

In this implementation Generator.initialize is split into smaller parts which are executed
on initialization of the object.

Figure 3.5.: Serialized Default Settings

'Main.SettingStore
noiseAlgorithm: RANDOM
noiseSettings: !Main.RandomNoiseSettingStore
noiseFactor: 0.5
range: 5
seed: 98653489
outputSize: 1000
precision: 0.5
precisionAndRangeRelative: true
randomNumberGeneratorSeed: 2345876
rangeMax: 100.0
rangeMin: 0.0
sensorTypes:
- TEMPERATURE

This implementation uses YamlBeans [12] to handle serialization and deserialization of
settings objects. This produces readable, easily modifiable settings files in yaml format,
containing the full object graph of SettingStore. Figure 3.5 shows the serialized repre-
sentation of the default settings of the application.

In this, lines 3 to 6 represent the RandomNoiseSettingStore contained inside the Set-
tingStore.

e noiseFactor controls the probability of random noise being added to a value

e range is the one-sided range of the noise to add to or subtract from the raw value
e seed is the seed that is used for the Random object of RandomNoiseAlgorithm,

e noiseAlgorithm sets which class should be used for noise

e sensorTypes is a list of Sensor types that should be used by the generator

18



3.3. Reference Implementation

o rangeMax and rangeMin set the range in which Sensors are allowed to generate
raw, noiseless data

e precision sets the standard precision Sensors should write into generated data
objects; this value is currently not modified inside the Sensor

e precisionAndRangeRelative allows the Sensors to map the aforementioned user-set
values to sane values on creation, depending on the type of the Sensor; Tempera-
tureSensor centers the range delta around 25°C if this is set

o randomNumberGeneratorSeed is the seed that will be used for the Random object
used by Sensors

o outputSize defines how many data sets should be generated

The settings file can be saved and loaded using command-line parameters. The stan-
dalone application currently supports a few different parameters.

e —-help, -h prints a list of available commands

o —-outputsize <long>, -n <long> sets the amount of output that should be gener-
ated; default: 1000

o —-output <string>, -o <string> sets the file the output will be written to; default:
”output.txt”

o --buffersize <long> defines how many lines should be stored in the buffer at a
time; default: 500

e —-save, -s writes the configuration to a file
e --load, -l loads the configuration from a file

e --settinglocation <string> defines which file to use for configuration reads/writes;
default: ”settings.yml”

e --createconfigonly makes the application exit after writing the settings file

The fileOutput subproject implements the DataOutput interface and writes the output
to the given location. It implements its own FileQutputSettingStore and uses a File-
OutputBuffer to improve performance by aggregating disk writes. The buffer uses a
Timestamp object to generate timestamps for data objects. One of these is provided by
Simple CounterTimestamp which simply returns incrementing ticks as timestamps.

The project employs unit tests where possible to ease development and prevent regres-
sions.
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Chapter 4.
Evaluation

In the following sections the resulting design and the standalone implementation in
particular will be evaluated based on a few of the important factors defined in the
beginning.

4.1. Adaptability/Expandability

It was stated that the generator should be easily expandable and adaptable to be useful
in different contexts. In the presented reference implementation three different compo-
nents are expandable through relatively small changes.

Extending core functionality is simple and only requires the creation of one or two new
classes and adding very few lines of code to the existing structure. First and possibly
most importantly, introducing an additional DataModel requires few changes: If the in-
tended output type can be represented as SimpleSensorData objects, only a new Sensor
has to be created. This also has to be registered in the SensorFactory by adding a TYPFE
and expanding the switch statement in createSensor. Depending on the planned con-
tents of the output it may be required to create another SensorData class and introduce
additional settings into the SettingStore.

Creating a new NoiseAlgorithm can be done in a very similar way. For this, a NoiseAl-
gorithm class and a NoiseSettingStore class have to be implemented and the algorithm
has to be registered in the NoiseAlgorithmFactory.

This also means that existing code can be easily adapted as components are largely
independent from each other.

Adding a different DataOutput is also quite simple, as the interface is small and an
object of the new implementation is simply given to the SettingProvider before calling
Init.run. The required effort required for the implementation of the DataQutput itself
cannot be evaluated as its complexity depends on the intended functionality.
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Figure 4.1.: Impact of Single Configuration Changes
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4.2. Configurability and Distribution of Outputs

Furthermore it was emphasized that it is important for the user to be able to control
many aspects of the output that will be generated. Figure 4.1 shows how specific settings
impact the range and distribution of temperature values. The boxes show the second
and third quartile with whiskers at the 5 and 95 percent marks. Each non-default plot
has only one changed setting relative to defaults.

The diagram clearly shows how the NoiseAlgorithm influences outliers, while the range
delta constrains the overall output range. This shows how the NoiseAlgorithm can be
used to simulate faulty outputs and unreliable sensors. With this, the user may gener-
ate data sets with differing amounts of erroneous outputs, which may be useful to test
robustness of algorithms regarding unexpected inputs.

Changing the seed does not meaningfully modify the range and distribution of outputs
but scatterplots such as figure B.3 show that it produces completely different data sets.
The ranges displayed in figure 4.1 are all roughly centered around 25°C because the Tem-
peratureSensor adjusts the range delta around this value, as explained in section 3.3.
Disallowing this lets the user freely define the region the outputs should be located in,
which is clearly visible in figure 4.2.

Overall, the user has a lot of control over the outputs. On the one hand this is exhibited
in changes of location and width of the set of numbers, as can be seen in figure 4.2. On
the other hand it is also apparent in changes of probability distribution. An example of
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Figure 4.2.: Impact of Different Configurations
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this is given in figure B.1, showing changes from a nearly uniform distribution to a more
continuous rise and fall on the edges, which can be attributed mostly to changes in noise
settings.

These results demonstrate wide control over the generator, which should prove useful in
diverse applications. Additional scatterplots showing changes in randomNumberGener-
atorSeed and moiseFactor are presented in figures B.3 and B.4.

4.3. Repeatability

It was also demanded that the application generates repeatable results. With the pre-
sented implementation it can be guaranteed that multiple runs with identical settings
will generate identical results.

As the official documentation states, the Random class itself fulfills this condition [8].
Since the only external inputs used in the process of generation itself are two Random
objects, only their settings and the variables used to transform retrieved numbers need
to be saved. The SettingStore object contains all seeds and non-derived variables used in
the generation, so with the application being able store the object on disk, the sequence
of instructions can be repeated as desired. This holds true as long as no extension of
the library introduces variables that are retrieved from new external sources and con-
currency is not implemented, which is discussed in 3.1.1.

These findings have also been confirmed in practical tests. An indication of this can be
seen in figure B.4, where small changes in noise settings generate largely identical data
sets in the same order.
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4.4. Maximum Amount of Outputs

It is also imperative that the application is able to produce amounts of that are helpful
in its intended use-cases.

How many non-periodic outputs can be generated largely depends on the period length
of Random. Since it employs an LCG, which uses only the most recent output to gen-
erate the next one, the outputs will be periodic from the point at which a value is
generated a second time. Random uses 48 bits in its LCG and generates a full period of
248 numbers [1].

The next important factor is how many random numbers are requested per data set,
as the periodic repeating of numbers might begin at a different point in the the overall
algorithm. The generator uses three different methods of Random: mnextInt(bound),
nextFloat(), and nextBoolean(). These methods internally call next(), which is the
method implementing the LCG [8, 9]. As the official documentation and the source
code of the OpenJDK platform show, the three methods may request different amounts
of random numbers using next() [8, 9].

Because other cases are not trivial to calculate due to loops in the code, it is from here
on assumed that only powers of 2 will be used as input for nextInt(bound). This requires
both noiseRange and the delta between rangeMax and rangeMin to be powers of 2.
Under this assumption, all three methods request one random number per call. The
application uses two independent Random objects for raw numbers and noise, which
both dispatch three calls to next per SensorData object. This means that both run
synchronously in regards to the period of generated numbers. With

248 — 981474976710656

and its sum of numbers
73mod3 =1

not being divisible by 3 without remainder, the period will occur with an offset of one
each time.
From this it can be said that the application is theoretically able to produce

3% 2% ~ 8,510,

or around 850 trillion unique output objects from a single configuration before repeating.
The sequence of outputs is also unique to every configuration of values that control the
behavior of the Random objects. However, this assumes that outputs have large enough
precision so these numbers can be represented without any rounding taking place.
Different data sets can be produced by changing any setting, amplifying the number of
possible outputs, especially in relation to the order in which they will be generated. This
should provide sufficient proof that the application can be used to provide large enough
data sets to be useful in its intended field.

24



4.5. Performance

4.5. Performance

Since the generator will be used to generate large amounts of objects and may be used
inside applications which process these objects directly, it is also important that gen-
erating objects is adequately quick. This was tested using simple methods with the
standalone application considered as a black box.

For this, the GNU Time [11] utility was used in a script to measure the durations to
generate different amounts of objects. The script can be seen in figure B.5. To attain
a somewhat reliable average, each configuration was run five times. To measure the
impact of disk writes, testing was done twice. Once with an output file located on disk
and once inside a temporary file system inside the main memory. Aside from output
size test runs used the default settings, which, among other things, set the file output
buffer to 500 objects. No other programs on the system were accessing the relevant files
or causing unusual system load while testing.

There are a number of other relevant environmental factors, that need to be known to
appropriately evaluate the results:

e (CPU: Intel Core 15 3570K @ 3.5GHz

RAM: 8GB DDR3-1600

Disk: OCZ Vertex3 Sata 3 SSD

File system on disk: extd

OS: Arch Linux, Kernel 4.10.4

Java Platform: OpenJDK (Runtime 1.8.0-121_b1; JVM 25.121-b13 64 bit)

Figure 4.3 shows test results up to 1 million objects and results up to 10 million objects
are available in figure B.6.

Results use the sum of system and user cpu time, as this should be a better indicator for
performance than real time measurements. The generation of 1 million and 10 million
objects took around 12.7 and 97.4 seconds of cpu time when writing to disk, or 11.7
and 82.1 seconds respectively when writing to memory. This seems to indicate that
increasing the buffer size to a more appropriate number should yield improvements.
However, the results show differences of up to nearly 20 percent when generating larger
amounts of data, which is most likely owed to imperfect testing and additional external
factors. Nevertheless these results should roughly demonstrate sufficient performance of
the generator for the intended moderate use cases.
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Figure 4.3.: Performance Testing Results
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4.6. Summary

output size

All of these evaluations show successful realization of a product that meets the prede-

fined conditions.

The design itself is not overly complex and easily adaptable, while still providing exten-
sive information for implementations. The application built from it is able to produce
appropriate amounts of data that can be configured to exhibit different properties and

it does so in a reliable and timely manner.

This showcases a result that is useful and well suited for the given task.
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Chapter 5.
Conclusions and Future Work

In the beginning the focus of this work was laid on creating a generator for sensor data
that is flexible, expandable, and suited to aid in the creation of new algorithms and ap-
plications for the IoT. The output of the generator was also demanded to be consistent
so it can be used without requiring regular adaption of other applications.

Further research into related works showed that the generator would not need to be
complex or provide security features and that no simulation would be necessary to syn-
thesize data. It also became apparent that configurability and modularity would have
to be basic principles the design should be based on.

In the presentation of the design, additional instructions were given to cover elements
which could not sufficiently be described by the design alone. This design was then
successively transferred into an implementation to further explain specific decisions and
how different aspects of it help in achieving the intended results.

Finally, the reference implementation was evaluated based on the previous demands,
where it showed positive results in performance, output scale, consistency, and generally
fulfilling expectations set before creation.

With these results the design and implementation discussed here should prove useful in
future works and aid in the development of new appliances.

Future Work

There are multiple ways for future works to expand on the results of this paper. The im-
plementation can be expanded by implementing new data models and noise algorithms,
possibly employing other algorithms such as gaussian noise to achieve various distribu-
tions. In addition to this, new ways to process generated data can be made available
through local services or even web APIs. Another area for expansion are settings, which
could be provided using a GUI or additional command-line options. In general, the
modularity of the design allows for many possible additions and adaptations.
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Figure A.2.: fileOutput Implementation Diagram
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Figure B.1.: Probability Distribution of 100000 Output Values
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Figure B.2.: Scatterplot of 100000 Output Values
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Figure B.3.: Impact of Different Seeds on 1000 Output Values
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Figure B.4.: Impact of noiseFactor on 1000 Output Values
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Figure B.5.: Performance Measuring Script

#1/bin/bash

i=1000

gencommand="'java -jar iot_generator_standalone-0.5-Alphal.jar'
while [ $i -le 10000000 ] ; do

echo "Output size: ${i}" | tee -a results.txt
for run in {1..5} ; do
echo "Run ${run}" | tee -a results.txt

/usr/bin/time --output=results.txt --append --portability $gencommand

s -n $1
done

(C 1=10%$i ))

done
Figure B.6.: Full Performance Testing Results
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